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We alm to extract structured data from paper PDFs. Tokens in the same VILA group usually have the No extra pre-training Is heeded to achieve
Key to the process is classifying token semantic categories. same category -- Token Category Uniformity performance gains -- saving up to 95%
The PDF text strings are not NLP model friendly. Assumption computational cost.
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I-VILA leads to Better Macro F1 across datasets H-VILA Is a hierarchical model that encodes VILA: PDF Parsing Yes No Yes
Datacet L ayoutLM | LayoutLM = [-VILA 't encodes the textual information in each group Vision Model No Yes Yes
using Text Lines using Text Blocks divid v th del th
GROTOAP2 92.34 92.37(+0.03% ) 93.38 (+1.13%) nalvidually, theh Tnodel the groups as a sequUeEnce, human annotation No No Yes
DocBank 9106 92.79 (+1.90%) 92.00 (+1.03%) The classifier predicts the group category, which Is
S2-VL 82.69 83.77 (+1.31%) 83.44 (+0.91%) assigned to all containing tokens as the token class. 52-VLUE Is a new benchmark for Visual

Layout-enhanced Scientific Document

I-VILA works for different models w/o extra pre-training H-VIL reduces almost 50% Inference time vs LayoutLM Understanding Evaluation. It augments

e Model Fine-tune only | Finejtune vvith.I—VILA Model Name Macro Fl Inference Time (Ms) existing dataset (DocBank) with visual
using Text Lines using Text Blocks BERT 8724 41.59 (-21%)
layout groups, and forms a new dataset
BERT 90.78 91.65 (+0.96%) 92.31 (+1.69%) LayoutlLM 21.06 52.56 | |
LayoutLM + [-VILA 92.79 56.31 (+7%) called S2-VL, with human annotations
ROBERTa 91.64 92.04 (+0.44%) 92.52 (+0.96%) S |
LayoutLM + H-VILA 91.27 28.07 (-47%) from 19 disciplines and different types of
LayoutLM 92.34 92.37 (+0.03%) 93.38 (+1.13%) LayoutLMv2 03.33 99.19 (+89%)

VILA groups sources.



